Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis.
نویسندگان
چکیده
Boron (B) is an essential plant micronutrient that is toxic at higher levels. NIP5;1 is a boric acid channel required for B uptake and growth under B deficiency. Accumulation of the NIP5;1 transcript is upregulated under B deficiency in Arabidopsis thaliana roots. To elucidate the mechanism of regulation, the 5' untranslated region (UTR) of NIP5;1 was tested for its ability to confer B-dependent regulation using β-glucuronidase and green fluorescent protein as reporters. This analysis showed that the 5' UTR was involved in NIP5;1 transcript accumulation in response to B conditions. We also found that high-B conditions trigger NIP5;1 mRNA degradation and that the sequence from +182 to +200 bp in the 5' UTR is required for this mRNA destabilization. In the nip5;1-1 mutant background, a NIP5;1 complementation construct without the 5' UTR produced high levels of mRNA accumulation, increased B concentrations in tissues, and reduced growth under high-B conditions. These data suggest that the 5' UTR controls B-dependent NIP5;1 mRNA degradation and that NIP5;1 mRNA degradation is important for plant acclimation to high-B conditions.
منابع مشابه
Insights into the Mechanisms Underlying Boron Homeostasis in Plants
Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under bo...
متن کاملPolar localization and endocytic degradation of a boron transporter, BOR1, is dependent on specific tyrosine residues.
Boron (B) is essential for plants, but is toxic in excess. Plants have to strictly regulate the uptake and translocation of B. In Arabidopsis thaliana root cells, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, localize to the outer (facing soil) and inner plasma membrane domains, respectively, under B limitation. The opposite polar localizations of the importer and export...
متن کاملPolar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways.
Boron (B) is essential for plant growth but is toxic when present in excess. In the roots of Arabidopsis thaliana under B limitation, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, are required for efficient B uptake and subsequent translocation into the xylem, respectively. However, under high-B conditions, BOR1 activity is repressed through endocytic degradation, presum...
متن کاملHighly Boron Deficiency-Tolerant Plants Generated by Enhanced Expression of NIP5;1, a Boric Acid Channel
Boron (B) is an essential element for plants, and B deficiency is a worldwide agricultural problem. In B-deficient areas, B is often supplied as fertilizer, but excess B can be toxic to both plants and animals. Generation of B deficiency-tolerant plants could reduce B fertilizer use. Improved fertility under B-limiting conditions in Arabidopsis thaliana by overexpression of BOR1, a B transporte...
متن کاملThe Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation.
Boron (B) is essential in plants but often present at low concentrations in the environment. To investigate how plants survive under conditions of B limitation, we conducted a transcriptome analysis and identified NIP5;1, a member of the major intrinsic protein family, as a gene upregulated in B-deficient roots of Arabidopsis thaliana. Promoter-beta-glucuronidase fusions indicated that NIP5;1 i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 23 9 شماره
صفحات -
تاریخ انتشار 2011